

GEO ALLIANCE **Driving Sustainable**

Applicability of geophysical surveys in geothermal projects in Romania – status and potential value for reservoir de-risking: Beius and Oradea case study

Alena Finogenova, Alexandru Schlett, PSS-GEO Marian Bordeianu TRANSGEX S.A., Babeș-Bolyai University

15 NOVEMBER 2024 BUCHAREST, ROMANIA Iceland Liechtenstein Norway Norway grants grants

Case study introduction

The project explores **applicability of geophysical technologies** to derisk potential exploration and production targets in geothermal projects with focus on **Romanian assets**

One of important goal **is to improve awareness about value of geophysical surveys in geothermal**

The project team established **cooperation with TRANSGEX S.A.** – the biggest geothermal producer in Romania and selected two case studies:

- Beiuş
- Oradea

The main addressed geophysical method is **seismic surveys**. Also potential of **electrical surveys** is being studied.

PSS-Geos

Beiuş, Oradea projects summary

Since 1960 geothermal water started to be used in Romania for recreation purposes, geothermal industrial production started in 1980. Since 1990/1991 two companies operate geothermal: TRANSGEX S.A. (Bihor, Satu Mare counties, Pannonian Basin), FORADEX (Banat county, Olt Valley, and Bucharest region, Pannonian Basin)

	Beiuş	Oradea	Nagyko skemo	
Capacity of power plant	21MW	35MW (under development to 50MW) +50kW electric	s	
Annual production	17,000G Gcal/year	39,000 Gcal/year	TR	
Type of geothermal	Low-enthalpy, open-system	Low-enthalpy, open-system	So	
Amount of wells	3 production +1 injection	11 production +1 injection	:	
Wells production	60-70 I/s, av. 65 I/s	4-42 /s, av. 19 /s		
Temperature of produced water	62-81 °C, av.73°C	70-105 °C, av. 88°C	c€	
Well design	Vertical			
Well completion	Open hole and ESP (electrical pump)	Open hole, cased hole and perforated (ESP + artesian)		

TRANSGEX Feasibility study, 2017 Source GeoDH 2014

Fig. 9.1.8. Heat Generation Cost for District Heating Network by Fuel

Beiuş geological settings

(M)

- Beiuş geothermal field is located within Beiuş Basin on eastern flank of larger back-arc Panonian Basin system, in proximity of surrounding orogens (Apuseni Mountains).
- Beiuş Depression is an opened towards basin half-graben formed as a result of extensional tectonics during U. Cretaceous Miocene rifting and further fast subsidence of a Pannonian Basin.

Balassa et all 2023 (modified after Bleahu et al., 1994)

PSS-Ge

Beiuş geological settings

(M)

- PSS-Ge
- Main tectono-stratigraphic sequences include Proterozoic to Early-Permian basement tectonic unit (nappes), sedimentary cover including Mesozoic pre-rift sequence and Neogene syn rift and post-rift sediments

SECȚIUNE GEOLOGICĂ PRIN BAZINUL BEIUȘ MODEL HIDROGEOLOGIC (SCHIȚĂ SCARĂ GRAFICĂ)

Materials from TRANSGEX, Mircea Novac

0 1 2 3 4 5kr

Beiuş geological settings. Reservoir

	Beiuş	Oradea	
Reservoir age	Triassic		
Lithology	Dolomite, Limestone, Dolomitic limestone, brecciated dolomites, sometimes silicified dolomites		
Porosity type	Porosity in various reports: Matrix porosity ~2% Fracture porosity ~10% Mentioned vuggs developed along fractures, no information on vuggy porosity estimation		
Permeability	0.01mD average matrix permeability, 15mD average including fractures		
Fractures/fault type	Inverse (Mesozoic) W-E direction and normal gravitational fractures (Neozoic) NW-SE direction (Bratu, 2017)		
Depth of reservoir top	Av. 1680m	Av. 2300m	
Reservoir gross thickness	480-1000 m	311-925 m	
Temperature downhole measurements	75-92 °C av. 84 °C	82-136 °C av. 103 °C	
Temperature lateral distribution	No local high temperature area have been identified	Proven areas with faults indicate 2-4ºC higher temp/gradient	
Water salinity	0.5 g/l TDS, no scaling.	0.9 – 1.2 g/l, no significant scaling.	

(MI)

There are existing not successful wells due to low permeable Triassic rock (Cotiglet 4008, Stei 3002)

Current status of well geophysics use for exploration and appraisal purposes

Well	Available log data	
4005	Resistivity, lithology description	
4006		
4004	Resistivity, GR, NGR	
4081	SP, Resistivity, GR, NGR, Density	
4767	Microresistivity, GR, Neutron, CALI, Resistivity, SP, lithodescription	
4796		
4797	GR, NGR, Density, SP, Resistivity, litho description	
4795	GR, Resistivity, litho description	
1715	SP, GR, rock description, Resistivity, NGR, Density	
1716	SP, GR, petro interp, resistivity, CALI	
1717	SP, Resistivity	
1709	SP, GR, CALI, Resistivity, NGR, Density, petro intepretation	
4704	GR, CALI, Resistivity, SP (relatively new log suite but not	
1/31	relevant because well did not penetrate Triassic)	
3001 3005	۵۲, LALI, Kesistivity, GK	
3004	Weatherford (ILL, Neutron, Density, GR, MPD – Compact photodensity)	
3003	······································	

- Well log data is used at time of well completion decision making, some interpretation is done by logging contractors for individual wells. Log data is not digitized to be actively used in interpretation.
- Core data is not available for The Operator
- Well data can be used more extensively for purpose of creating more detailed geological concept. It may help to derisk reservoir performance.

Current status of geophysics use for exploration and appraisal purposes

- G&G work is based on wells and regional studies available in the area. Used well information generally include stratigraphy, macro core and cuttings description, observations during drilling
- Water properties measurements are more regulated, detailed water composition analysis have been done in frame of several recent researches [1, 3] and as part of process addressing scaling issue work in neighbor Borş geothermal field [2].
- Geophysical surveys are not currently used or considered by The Operator in G&G modelling of future well planning.
- Number of recent studies addressing use of seismic 2D surveys and Magnetotelluric electrical surveys. Most of them are involving University of Bucharest. The
 outcome of the studies include processed seismic lines and structural interpretation of main surfaces. Information about well use during seismic interpretation have
 not been in the articles. None of found works is addressing directly Beiuş or Oradea geothermal projects

Pure Appl. Geophys. 174 (2017), 4153–4169 © 2017 Springer International Publishing AG DDI 10.007/#0024-017-1618-7	Received: 14 September 2022 Revised: 3 May 2023 Accepted: 7 August 2023 DOI: 10.1111/ter.12677 Terra Nova Willey	[1] Balassa et all: DOI:1 <u>0.35925/j.multi.2023.4.6</u> [2] STĂNĂŞEL et all 2005 [3] Petrescu-Mag et all 2009
Analysis of Major Geohernal Anomalies in Romania Geophysical Analysis of Major Geohernal Anomalies in Romania Geophysical Analysis of Major Geohernal Anomalies in Romania Geophysical Analysis of Major Geohernal Anomalies in Romania Control of the main geohernal structures from Romania, Interactive Structures from the North Sector Structures Anomalies (Using Narrow-Anggles) Interactive Analysis of Midden Data	Miocene tectonic activity at the boundary between NE Pannonian and NW Transylvanian basins (Romania): Insight from new seismic data Inelia Panea ¹ Ioan Munteanu ¹ Carmen Gaina ² Victor Mocanu ¹ Relu Dumitru Roban ¹ Catalin Florin Bouaru ¹ Geysir-BaiaMare Working Group	<image/> Construction Cons

Current status of geophysics use for exploration and appraisal purposes

SCALE

roved groundwater flow dire

Potential improvement from using 2D seismic surveys based on previous studies

Addressed parameter	Importance for geothermal project	Expected accuracy	Possibility to achieve results in Beiuș, Oradea
Mapping of structural surface for Top Mesozoic	critical	20-50m	Available legacy 2D seismic data
Mapping of structural surface for Top Triassic in inner Triassic morphology	critical	30-60m	Processing technologies need to be tested to achieve interpretable image of Mesozoic sequence
Major faults	critical	certain for major faults (more then 30-70m amplitude)	
Faults with high heat flow	important, but value is not yet proven	can not be defined by seismic directly unless geological concept is developed	A regional concept for high heat flow faults should be developed as a part of regional project
Small scale fractures	good to have	Indirect indicators on seismic attributes Certain mapping possible using 3D seismic, or near well VSP	Most likely quality of legacy seismic will not allow to achieve accurate results Acquisition of new seismic data should be financially evaluated.
Reservoir properties (porosity, permeability)	good to have	2-5%, requires well data for calibration	

Potential for use of electric surveys

PSS-Geòs

- Based on studied wells section can be characterized as medium resistivity contrast, which means that identification of thick layers is possible
- Several conductive layers are on top of Mesozoic and target Triassic which will likely allow to map both Top Triassic and
- Within Triassic shaly conductive intervals are obstacle for mapping of best reservoir zones
- Two main methods are usual to use in geothermal: Magnetotelluric (MT) and Transient of the electromagnetic field (TEM/TDEM)

Example of different methods outcomes (CSAM) and TEM. Modelling Yang, Bin Xiong et all, 2022

Figure 11. (a) Resistivity profile of CSAMT with a line number of 60. (b) Secondary field potential profile of TEM with a line number of 60. (c) Resistivity profile of TEM with a line number of 60.

https://doi.org/10.1080/10916466.2022.2060256

Potential improvement from using electric surveys (MT, TEM)

Addressed parameter	Applicability of TEM	Applicability of MT
Geoelectric section	High with high resolution	Medium resolution to greater depth
Base Neogene sequence mapping	high	high
Mapping of Triassic top	medium	Low (low resistivity contrast within Mesozoic section)
Faults mapping	high	medium
Mapping of faults with high temperature fluids	medium	low
Mapping of zones with high porosity and therefore higher water content within target interval	medium	medium
ldentification of deep heat sources (intrusions, granitic bodies)	not possible because of low depth of investigation	medium

(R)

MT surveys are easier in execution with low cost IK – 2.5KEUR per km, low mobilization fee

To achieve 3-4km depth is required to use linear system, size of transmitter loop must be 500x500m and 1000x1000m to achieve 4-6km depth

Recommended workflow for integrated analysis of geophysical data

ANGE

Key challenges for The Operator to apply geophysics in geothermal projects on example of Beiuş and Oradea

- Challenging process to access data base for legacy seismic data
- Different license owners for oil & gas and geothermal projects, with potential to streamline sharing of information
- Evaluation of the value of geophysical surveys as part of the planning phase for the geothermal exploration process
- Opportunity to assess in-country availability of service-providers of geophysical surveys and benchmark the cost versus value of information

Aknowledgments

- This work has developed in the frame of the project: "Driving Sustainable Urban Futures: A Romanian-Norwegian Innovation Geophysical Alliance for Green Transition and SMART City Development" granted by Innovation Norway, Pre Stack Solution-Geo and University of Bucharest
- The data for case study as well as knowledge of the Romanian geothermal field was provided by TRANSGEX S.A.

15

Bibliography

- Maik Neukirch1,2, Alexander Minakov2, Maxim Smirnov3, Carmen Gaina2, Ioan Munteanu4,5, and Ionelia Panea4, Electrical Resistivity Imaging of the Northeast Carpathian Volcanic Arc With 3-D Magnetotellurics Reveals Shallow Hydrothermal System, 2024 JGR Solid Earth https://doi.org/10.1029/2023JB028230
- <u>Ionelia Panea</u>, <u>Ioan Munteanu</u>, <u>Carmen Gaina</u>, <u>Victor Mocanu</u>, <u>Relu Dumitru Roban</u>, <u>Catalin Florin Bouaru</u>, <u>Geysir-BaiaMare Working Group</u> Miocene tectonic activity at the boundary between NE Pannonian and NW Transylvanian basins (Romania): Insight from new seismic data, Terra Nova, 2023 <u>https://doi.org/10.1111/ter.12677</u>
- Panea, I. (2020) Imaging of Hidden Structures from the North Apuseni Mts, Romania, Using Narrow-Angle Seismic Reflection Data. Open Journal of Geology, 10, 53-70. <u>https://doi.org/10.4236/ojg.2020.101003</u>
- Ionelia Panea, Victor Mocanu Geophysical Analysis of Major Geothermal Anomalies in Romania, Pure and Applied Geophysics, 2017 DOI 10.1007/s00024-017-1618-7
- A. Balázs, L. Matenco, I. Magyar, F. Horváth, and S. Cloetingh The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Tectonics, 35, doi:10.1002/2015TC004109
- F. Horvátha, B. Musitza, A. Balázsb, A. Véghd, A. Uhrine, A. Nádorc, B. Koroknaia, N. Papd, T. Tótha, G. Wóruma Evolution of the Pannonian basin and its geothermal resources, Geothermics 53, 2013
- William Cummin, Randall Mackie Resistivity Imaging of Geothermal Resources Using 1D, 2D and 3D MT Inversion and TDEM Static Shift Correction Illustrated by a Glass Mountain Case History, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010
- Iancu Orășeanu Groundwater dynamics of Beiuș Basin basement and its surrounding mountain areas, Oradea, 2015
- CHPM2030 DELIVERABLE D6.2.3 REPORT ON PILOTS: EVALUATION OF THE CHPM POTENTIAL OF THE STUDY SITE, ROMANIA
- Balassa C., Bordeianu M., Pál C., Márton T., Norbert N., An unusual case of low concentration mineral brines in the geothermal waters from Beiuş Basin (Northwestern Romania), 2023 https://doi.org/10.35925/j.multi.2023.4.6
- Dana STĂNĂŞEL, Aurel IDVIb, Hrefna KRISTMANNSDOTTIRC and Iulian STĂNĂŞEL PHYSICAL-CHEMISTRY STUDIES ON GEOTHERMAL WATERS AND SCALE FORMATIONS, Revue Roumaine de Chimie, 2006, 51(3), 179-185
- Ruxandra M. Petrescu-Mag, Carmen Roba, D. Crina Petrescu The Romanian perspective on geothermal energy resources. The chemistry of the geothermal waters from Oradea Triassic aquifer AACL BIOFLUX, 2009
- Merten, S., Matenco, L., Foeken, J., & Andriessen, P. (2011). Toward understanding the post-collisional evolution of an orogen influenced by convergence at adjacent plate margins: Late Cretaceous-Tertiary thermotectonic history of the Apuseni Mountains. *Tectonics, Vol. 30*.
- Yang, Y., Xiong, B., Peng, S., Chen, H., Zhang, T., & Liu, L. (2022). Geothermal exploration using numerical simulation and a comprehensive electromagnetic method. *Petroleum Science and Technology, 41*(3), 361–385. https://doi.org/10.1080/10916466.2022.2060256

Technical challenges of applying TEM for deep reservoirs

Innovative 2D, 3D and 4D survey technologies with high spatial density, resolution and high sampling frequency

